翻訳と辞書
Words near each other
・ Heris
・ Heris (disambiguation)
・ Heris County
・ Heris Tower
・ Heris, Ardabil
・ Heris, Maragheh
・ Heris, Marand
・ Heris, Sarab
・ Heris, Shabestar
・ Herisau
・ Herisht
・ Herissantia
・ Herissantia crispa
・ Herit
・ Heritability
Heritability of autism
・ Heritability of IQ
・ Heritable jurisdictions
・ Heritable Jurisdictions (Scotland) Act 1746
・ Heritage
・ Heritage (1935 film)
・ Heritage (1984 film)
・ Heritage (Armenia)
・ Heritage (CTrain)
・ Heritage (Earth, Wind & Fire album)
・ Heritage (Eddie Henderson album)
・ Heritage (Greenville, South Carolina)
・ Heritage (novel)
・ Heritage (Opeth album)
・ Heritage (sculpture)


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Heritability of autism : ウィキペディア英語版
Heritability of autism

The heritability of autism is the proportion of autism that can be explained by genetic variation; if the heritability of a condition is high, then the condition is considered to be primarily genetic. Autism has a strong genetic basis, although the genetics of autism is complex and it is unclear whether autism spectrum disorder (ASD) is explained more by multigene interactions or by rare mutations with major effects.
Early studies of twins estimated the heritability of autism to be more than 90%--meaning that 90% of the differences between autistic and non-autistic individuals was due to genetics.〔 This may be an overestimate: new twin data and models with structural genetic variation are needed.〔 When only one identical twin is autistic, the other often has learning or social disabilities.〔Le Couteur, A., Bailey, A., Goode, S., Pickles, A., Robertson, S., Gottesman, I., & Rutter, M. (1996). A broader phenotype of autism: the clinical spectrum in twins. Journal of Child Psychology and Psychiatry, and Allied Disciplines, 37(7), 785–801. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/8923222〕 For adult siblings, the risk of having one or more features of the broader autism phenotype might be as high as 30%, much higher than the risk in controls.〔
Genetic linkage analysis has been inconclusive; many association analyses have had inadequate power. For each autistic individual, mutations in more than one gene may be implicated. Mutations in different sets of genes may be involved in different autistic individuals. There may be significant interactions among mutations in several genes, or between the environment and mutated genes. By identifying genetic markers inherited with autism in family studies, numerous candidate genes have been located, most of which encode proteins involved in neural development and function. However, for most of the candidate genes, the actual mutations that increase the risk for autism have not been identified. Typically, autism cannot be traced to a Mendelian (single-gene) mutation or to single chromosome abnormalities such as fragile X syndrome or 22q13 deletion syndrome.
The large number of autistic individuals with unaffected family members may result from copy number variations (CNVs)—spontaneous alterations in the genetic material during meiosis that delete or duplicate genetic material. Sporadic (non-inherited) cases have been examined to identify candidate genetic loci involved in autism. A substantial fraction of autism may be highly heritable but not inherited: that is, the mutation that causes the autism is not present in the parental genome.〔
Although the fraction of autism traceable to a genetic cause may grow to 30–40% as the resolution of array CGH improves, several results in this area have been described incautiously, possibly misleading the public into thinking that a large proportion of autism is caused by CNVs and is detectable via array CGH, or that detecting CNVs is tantamount to a genetic diagnosis. The Autism Genome Project database contains genetic linkage and CNV data that connect autism to genetic loci and suggest that every human chromosome may be involved.〔 It may be that using autism-related subphenotypes instead of the diagnosis of autism per se may be more useful in identifying susceptible loci.
==Twin studies==
Twin studies are a helpful tool in determining the heritability of disorders and human traits in general. They involve determining concordance of characteristics between identical (monozygotic or MZ) twins and between fraternal (dizygotic or DZ) twins. Possible problems of twin studies are: (1) errors in diagnosis of monozygocity, and (2) the assumption that social environment sharing by DZ twins is equivalent to that of MZ twins.
A condition that is environmentally caused without genetic involvement would yield a concordance for MZ twins equal to the concordance found for DZ twins. In contrast, a condition that is completely genetic in origin would theoretically yield a concordance of 100% for MZ pairs and usually much less for DZ pairs depending on factors such as the number of genes involved and assortative mating.
An example of a condition that appears to have very little if any genetic influence is irritable bowel syndrome (IBS), with a concordance of 28% vs. 27% for MZ and DZ pairs respectively. An
example of a human characteristics that is extremely heritable is eye color, with a concordance of 98% for MZ pairs and 7–49% for DZ pairs depending on age.
Identical twin studies put autism's heritability in a range between 36% and 95.7%, with concordance for a broader phenotype usually found at the higher end of the range.〔Twin studies (concordance in brackets):
*(0.8–1) Ciaranello, Roland D. M.D (The Neurobiology of Infantile Autism )
*(0.8) Kallen, Ronald J. M.D (CDC Reports a higher than expected prevalence of autism in Brick Township )
*(0.91–0.93) Dawson, Geraldine Ph. D (Written testimony Public Health Subcommittee, United States Senate )
*(0.9) Lang, Leslie H.(Study points to chromosome site of autism gene )
*(0.6–0.92)
*(0.6–0.8) 〕 Autism concordance in siblings and fraternal twins is anywhere between 0 and 23.5%. This is more likely 2–4% for classic autism and 10–20% for a broader spectrum. Assuming a general-population prevalence of 0.1%, the risk of classic autism in siblings is 20- to 40-fold that of the general population.
Notable twin studies have attempted to shed light on the
heritability of autism.
A small scale study in 1977 was the first of its kind to look into the heritability of autism. It involved 10 DZ and 11 MZ pairs in which at least one twin in each pair showed infantile autism. It found a concordance of 36% in MZ twins compared to 0% for DZ twins. Concordance of "cognitive abnormalities" was 82% in MZ pairs and 10% for DZ pairs. In 12 of the 17 pairs discordant for autism, a biological hazard was believed to be associated with the condition.
A 1979 case report discussed a pair of identical twins concordant for autism. The twins developed similarly until the age of 4, when one of them spontaneously improved. The other twin, who had suffered infrequent seizures, remained autistic. The report noted that genetic factors were not "all important" in the development of the twins.
In 1985, a study of twins enrolled with the UCLA Registry for Genetic Studies found a concordance of 95.7% for autism in 23 pairs of MZ twins, and 23.5% for 17 DZ twins.
In a 1989 study, Nordic countries were screened for cases of autism. Eleven pairs of MZ twins and 10 of DZ twins were examined. Concordance of autism was found to be 91% in MZ and 0% in DZ pairs. The concordances for "cognitive disorder" were 91% and 30% respectively. In most of the pairs discordant for autism, the autistic twin had more perinatal stress.
A British twin sample was reexamined in 1995 and a 60% concordance was found for autism in MZ twins vs. 0% concordance for DZ. It also found 92% concordance for a broader spectrum in MZ vs. 10% for DZ. The study concluded that "obstetric hazards usually appear to be consequences of genetically influenced abnormal development, rather than independent aetiological factors."
A 1999 study looked at social cognitive skills in general-population children and adolescents. It found "poorer social cognition in males", and a heritability of 0.68 with higher genetic influence in younger twins.
In 2000, a study looked at reciprocal social behavior in general-population identical twins. It found a concordance of 73% for MZ, i.e. "highly heritable", and 37% for DZ pairs.
A 2004 study looked at 16 MZ twins and found a concordance of 43.75% for "strictly defined autism". Neuroanatomical differences (discordant cerebellar white and grey matter volumes) between discordant twins were found. The abstract notes that in previous studies 75% of the non-autistic twins displayed the broader phenotype.
Another 2004 study examined whether the characteristic symptoms of autism (impaired social interaction, communication deficits, and repetitive behaviors) show decreased variance of symptoms among monozygotic twins compared to siblings in a sample of 16 families. The study demonstrated significant aggregation of symptoms in twins. It also concluded that "the levels of clinical features seen in autism may be a result of mainly independent genetic traits."
An English twin study in 2006 found high heritability for autistic traits in a large group of 3,400 pairs of twins.
One critic of the pre-2006 twin studies said that they were too small and their results can be plausibly explained on non-genetic grounds.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Heritability of autism」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.